A New Perspective on an Old Perceptron Algorithm
نویسندگان
چکیده
We present a generalization of the Perceptron algorithm. The new algorithm performs a Perceptron-style update whenever the margin of an example is smaller than a predefined value. We derive worst case mistake bounds for our algorithm. As a byproduct we obtain a new mistake bound for the Perceptron algorithm in the inseparable case. We describe a multiclass extension of the algorithm. This extension is used in an experimental evaluation in which we compare the proposed algorithm to the Perceptron algorithm.
منابع مشابه
A TS Fuzzy Model Derived from a Typical Multi-Layer Perceptron
In this paper, we introduce a Takagi-Sugeno (TS) fuzzy model which is derived from a typical Multi-Layer Perceptron Neural Network (MLP NN). At first, it is shown that the considered MLP NN can be interpreted as a variety of TS fuzzy model. It is discussed that the utilized Membership Function (MF) in such TS fuzzy model, despite its flexible structure, has some major restrictions. After modify...
متن کاملA New Hybrid model of Multi-layer Perceptron Artificial Neural Network and Genetic Algorithms in Web Design Management Based on CMS
The size and complexity of websites have grown significantly during recent years. In line with this growth, the need to maintain most of the resources has been intensified. Content Management Systems (CMSs) are software that was presented in accordance with increased demands of users. With the advent of Content Management Systems, factors such as: domains, predesigned module’s development, grap...
متن کاملNeural Nets via Forward State Transformation and Backward Loss Transformation
This article studies (multilayer perceptron) neural networks with an emphasis on the transformations involved — both forward and backward — in order to develop a semantical/logical perspective that is in line with standard program semantics. The common two-pass neural network training algorithms make this viewpoint particularly fitting. In the forward direction, neural networks act as state tra...
متن کاملNew full adders using multi-layer perceptron network
How to reconfigure a logic gate for a variety of functions is an interesting topic. In this paper, a different method of designing logic gates are proposed. Initially, due to the training ability of the multilayer perceptron neural network, it was used to create a new type of logic and full adder gates. In this method, the perceptron network was trained and then tested. This network was 100% ac...
متن کاملPerceptron like Algorithms for Online Learning to Rank
Perceptron is a classic online algorithm for learning a classification function. In this paper, we provide a novel extension of the perceptron algorithm to the learning to rank problem in information retrieval. We consider popular listwise performance measures such as Normalized Discounted Cumulative Gain (NDCG) and Average Precision (AP). A modern perspective on perceptron for classification i...
متن کامل